3.1.11 \(\int \frac {(a+a \cot (c+d x))^2}{\sqrt {e \cot (c+d x)}} \, dx\) [11]

3.1.11.1 Optimal result
3.1.11.2 Mathematica [A] (verified)
3.1.11.3 Rubi [A] (warning: unable to verify)
3.1.11.4 Maple [A] (verified)
3.1.11.5 Fricas [C] (verification not implemented)
3.1.11.6 Sympy [F]
3.1.11.7 Maxima [F(-2)]
3.1.11.8 Giac [F]
3.1.11.9 Mupad [B] (verification not implemented)

3.1.11.1 Optimal result

Integrand size = 25, antiderivative size = 222 \[ \int \frac {(a+a \cot (c+d x))^2}{\sqrt {e \cot (c+d x)}} \, dx=\frac {\sqrt {2} a^2 \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{d \sqrt {e}}-\frac {\sqrt {2} a^2 \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{d \sqrt {e}}-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}-\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\sqrt {2} d \sqrt {e}}+\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{\sqrt {2} d \sqrt {e}} \]

output
-1/2*a^2*ln(e^(1/2)+cot(d*x+c)*e^(1/2)-2^(1/2)*(e*cot(d*x+c))^(1/2))/d*2^( 
1/2)/e^(1/2)+1/2*a^2*ln(e^(1/2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^ 
(1/2))/d*2^(1/2)/e^(1/2)+a^2*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2) 
)*2^(1/2)/d/e^(1/2)-a^2*arctan(1+2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))*2^( 
1/2)/d/e^(1/2)-2*a^2*(e*cot(d*x+c))^(1/2)/d/e
 
3.1.11.2 Mathematica [A] (verified)

Time = 6.11 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.14 \[ \int \frac {(a+a \cot (c+d x))^2}{\sqrt {e \cot (c+d x)}} \, dx=-\frac {2 \cos (c+d x) (a+a \cot (c+d x))^2 \sin (c+d x)}{d \sqrt {e \cot (c+d x)} (\cos (c+d x)+\sin (c+d x))^2}-\frac {2 \arctan \left (\sqrt [4]{-\cot (c+d x)} \sqrt [4]{\cot (c+d x)}\right ) \sqrt [4]{-\cot (c+d x)} \sqrt [4]{\cot (c+d x)} (a+a \cot (c+d x))^2 \sin ^2(c+d x)}{d \sqrt {e \cot (c+d x)} (\cos (c+d x)+\sin (c+d x))^2}+\frac {2 \text {arctanh}\left (\sqrt [4]{-\cot (c+d x)} \sqrt [4]{\cot (c+d x)}\right ) \sqrt [4]{-\cot (c+d x)} \sqrt [4]{\cot (c+d x)} (a+a \cot (c+d x))^2 \sin ^2(c+d x)}{d \sqrt {e \cot (c+d x)} (\cos (c+d x)+\sin (c+d x))^2} \]

input
Integrate[(a + a*Cot[c + d*x])^2/Sqrt[e*Cot[c + d*x]],x]
 
output
(-2*Cos[c + d*x]*(a + a*Cot[c + d*x])^2*Sin[c + d*x])/(d*Sqrt[e*Cot[c + d* 
x]]*(Cos[c + d*x] + Sin[c + d*x])^2) - (2*ArcTan[(-Cot[c + d*x])^(1/4)*Cot 
[c + d*x]^(1/4)]*(-Cot[c + d*x])^(1/4)*Cot[c + d*x]^(1/4)*(a + a*Cot[c + d 
*x])^2*Sin[c + d*x]^2)/(d*Sqrt[e*Cot[c + d*x]]*(Cos[c + d*x] + Sin[c + d*x 
])^2) + (2*ArcTanh[(-Cot[c + d*x])^(1/4)*Cot[c + d*x]^(1/4)]*(-Cot[c + d*x 
])^(1/4)*Cot[c + d*x]^(1/4)*(a + a*Cot[c + d*x])^2*Sin[c + d*x]^2)/(d*Sqrt 
[e*Cot[c + d*x]]*(Cos[c + d*x] + Sin[c + d*x])^2)
 
3.1.11.3 Rubi [A] (warning: unable to verify)

Time = 0.53 (sec) , antiderivative size = 200, normalized size of antiderivative = 0.90, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 4026, 27, 2030, 3042, 3957, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cot (c+d x)+a)^2}{\sqrt {e \cot (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a-a \tan \left (c+d x+\frac {\pi }{2}\right )\right )^2}{\sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4026

\(\displaystyle \int \frac {2 a^2 \cot (c+d x)}{\sqrt {e \cot (c+d x)}}dx-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

\(\Big \downarrow \) 27

\(\displaystyle 2 a^2 \int \frac {\cot (c+d x)}{\sqrt {e \cot (c+d x)}}dx-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

\(\Big \downarrow \) 2030

\(\displaystyle \frac {2 a^2 \int \sqrt {e \cot (c+d x)}dx}{e}-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a^2 \int \sqrt {-e \tan \left (c+d x+\frac {\pi }{2}\right )}dx}{e}-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

\(\Big \downarrow \) 3957

\(\displaystyle -\frac {2 a^2 \int \frac {\sqrt {e \cot (c+d x)}}{\cot ^2(c+d x) e^2+e^2}d(e \cot (c+d x))}{d}-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

\(\Big \downarrow \) 266

\(\displaystyle -\frac {4 a^2 \int \frac {e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}}{d}-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

\(\Big \downarrow \) 826

\(\displaystyle -\frac {4 a^2 \left (\frac {1}{2} \int \frac {e^2 \cot ^2(c+d x)+e}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}-\frac {1}{2} \int \frac {e-e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}\right )}{d}-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {4 a^2 \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{e^2 \cot ^2(c+d x)-\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}+\frac {1}{2} \int \frac {1}{e^2 \cot ^2(c+d x)+\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}\right )-\frac {1}{2} \int \frac {e-e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}\right )}{d}-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {4 a^2 \left (\frac {1}{2} \left (\frac {\int \frac {1}{-e^2 \cot ^2(c+d x)-1}d\left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}-\frac {\int \frac {1}{-e^2 \cot ^2(c+d x)-1}d\left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \int \frac {e-e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}\right )}{d}-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {4 a^2 \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \int \frac {e-e^2 \cot ^2(c+d x)}{e^4 \cot ^4(c+d x)+e^2}d\sqrt {e \cot (c+d x)}\right )}{d}-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {4 a^2 \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{e^2 \cot ^2(c+d x)-\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int -\frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{e^2 \cot ^2(c+d x)+\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {4 a^2 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{e^2 \cot ^2(c+d x)-\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int \frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{e^2 \cot ^2(c+d x)+\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {4 a^2 \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \cot (c+d x)}}{e^2 \cot ^2(c+d x)-\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int \frac {\sqrt {e}+\sqrt {2} \sqrt {e \cot (c+d x)}}{e^2 \cot ^2(c+d x)+\sqrt {2} e^{3/2} \cot (c+d x)+e}d\sqrt {e \cot (c+d x)}}{2 \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {4 a^2 \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \cot (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \cot (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\log \left (-\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (\sqrt {2} e^{3/2} \cot (c+d x)+e^2 \cot ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d}-\frac {2 a^2 \sqrt {e \cot (c+d x)}}{d e}\)

input
Int[(a + a*Cot[c + d*x])^2/Sqrt[e*Cot[c + d*x]],x]
 
output
(-2*a^2*Sqrt[e*Cot[c + d*x]])/(d*e) - (4*a^2*((-(ArcTan[1 - Sqrt[2]*Sqrt[e 
]*Cot[c + d*x]]/(Sqrt[2]*Sqrt[e])) + ArcTan[1 + Sqrt[2]*Sqrt[e]*Cot[c + d* 
x]]/(Sqrt[2]*Sqrt[e]))/2 + (Log[e - Sqrt[2]*e^(3/2)*Cot[c + d*x] + e^2*Cot 
[c + d*x]^2]/(2*Sqrt[2]*Sqrt[e]) - Log[e + Sqrt[2]*e^(3/2)*Cot[c + d*x] + 
e^2*Cot[c + d*x]^2]/(2*Sqrt[2]*Sqrt[e]))/2))/d
 

3.1.11.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 

rule 4026
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^2, x_Symbol] :> Simp[d^2*((a + b*Tan[e + f*x])^(m + 1)/(b*f*( 
m + 1))), x] + Int[(a + b*Tan[e + f*x])^m*Simp[c^2 - d^2 + 2*c*d*Tan[e + f* 
x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ 
[m, -1] &&  !(EqQ[m, 2] && EqQ[a, 0])
 
3.1.11.4 Maple [A] (verified)

Time = 0.05 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.70

method result size
derivativedivides \(-\frac {2 a^{2} \left (\sqrt {e \cot \left (d x +c \right )}+\frac {e \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (e^{2}\right )^{\frac {1}{4}}}\right )}{d e}\) \(155\)
default \(-\frac {2 a^{2} \left (\sqrt {e \cot \left (d x +c \right )}+\frac {e \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 \left (e^{2}\right )^{\frac {1}{4}}}\right )}{d e}\) \(155\)
parts \(-\frac {a^{2} \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d e}-\frac {2 a^{2} \left (\sqrt {e \cot \left (d x +c \right )}-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8}\right )}{d e}-\frac {a^{2} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{2 d \left (e^{2}\right )^{\frac {1}{4}}}\) \(432\)

input
int((a+a*cot(d*x+c))^2/(e*cot(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
-2/d*a^2/e*((e*cot(d*x+c))^(1/2)+1/4*e/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+ 
c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^ 
2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2) 
^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c) 
)^(1/2)+1)))
 
3.1.11.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.30 (sec) , antiderivative size = 323, normalized size of antiderivative = 1.45 \[ \int \frac {(a+a \cot (c+d x))^2}{\sqrt {e \cot (c+d x)}} \, dx=-\frac {\left (-\frac {a^{8}}{d^{4} e^{2}}\right )^{\frac {1}{4}} d e \log \left (a^{6} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} + \left (-\frac {a^{8}}{d^{4} e^{2}}\right )^{\frac {3}{4}} d^{3} e^{2}\right ) - i \, \left (-\frac {a^{8}}{d^{4} e^{2}}\right )^{\frac {1}{4}} d e \log \left (a^{6} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} + i \, \left (-\frac {a^{8}}{d^{4} e^{2}}\right )^{\frac {3}{4}} d^{3} e^{2}\right ) + i \, \left (-\frac {a^{8}}{d^{4} e^{2}}\right )^{\frac {1}{4}} d e \log \left (a^{6} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} - i \, \left (-\frac {a^{8}}{d^{4} e^{2}}\right )^{\frac {3}{4}} d^{3} e^{2}\right ) - \left (-\frac {a^{8}}{d^{4} e^{2}}\right )^{\frac {1}{4}} d e \log \left (a^{6} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} - \left (-\frac {a^{8}}{d^{4} e^{2}}\right )^{\frac {3}{4}} d^{3} e^{2}\right ) + 2 \, a^{2} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}}{d e} \]

input
integrate((a+a*cot(d*x+c))^2/(e*cot(d*x+c))^(1/2),x, algorithm="fricas")
 
output
-((-a^8/(d^4*e^2))^(1/4)*d*e*log(a^6*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d 
*x + 2*c)) + (-a^8/(d^4*e^2))^(3/4)*d^3*e^2) - I*(-a^8/(d^4*e^2))^(1/4)*d* 
e*log(a^6*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) + I*(-a^8/(d^4*e 
^2))^(3/4)*d^3*e^2) + I*(-a^8/(d^4*e^2))^(1/4)*d*e*log(a^6*sqrt((e*cos(2*d 
*x + 2*c) + e)/sin(2*d*x + 2*c)) - I*(-a^8/(d^4*e^2))^(3/4)*d^3*e^2) - (-a 
^8/(d^4*e^2))^(1/4)*d*e*log(a^6*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 
2*c)) - (-a^8/(d^4*e^2))^(3/4)*d^3*e^2) + 2*a^2*sqrt((e*cos(2*d*x + 2*c) + 
 e)/sin(2*d*x + 2*c)))/(d*e)
 
3.1.11.6 Sympy [F]

\[ \int \frac {(a+a \cot (c+d x))^2}{\sqrt {e \cot (c+d x)}} \, dx=a^{2} \left (\int \frac {1}{\sqrt {e \cot {\left (c + d x \right )}}}\, dx + \int \frac {2 \cot {\left (c + d x \right )}}{\sqrt {e \cot {\left (c + d x \right )}}}\, dx + \int \frac {\cot ^{2}{\left (c + d x \right )}}{\sqrt {e \cot {\left (c + d x \right )}}}\, dx\right ) \]

input
integrate((a+a*cot(d*x+c))**2/(e*cot(d*x+c))**(1/2),x)
 
output
a**2*(Integral(1/sqrt(e*cot(c + d*x)), x) + Integral(2*cot(c + d*x)/sqrt(e 
*cot(c + d*x)), x) + Integral(cot(c + d*x)**2/sqrt(e*cot(c + d*x)), x))
 
3.1.11.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+a \cot (c+d x))^2}{\sqrt {e \cot (c+d x)}} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+a*cot(d*x+c))^2/(e*cot(d*x+c))^(1/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.1.11.8 Giac [F]

\[ \int \frac {(a+a \cot (c+d x))^2}{\sqrt {e \cot (c+d x)}} \, dx=\int { \frac {{\left (a \cot \left (d x + c\right ) + a\right )}^{2}}{\sqrt {e \cot \left (d x + c\right )}} \,d x } \]

input
integrate((a+a*cot(d*x+c))^2/(e*cot(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate((a*cot(d*x + c) + a)^2/sqrt(e*cot(d*x + c)), x)
 
3.1.11.9 Mupad [B] (verification not implemented)

Time = 12.74 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.39 \[ \int \frac {(a+a \cot (c+d x))^2}{\sqrt {e \cot (c+d x)}} \, dx=\frac {2\,{\left (-1\right )}^{1/4}\,a^2\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d\,\sqrt {e}}-\frac {2\,{\left (-1\right )}^{1/4}\,a^2\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d\,\sqrt {e}}-\frac {2\,a^2\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{d\,e} \]

input
int((a + a*cot(c + d*x))^2/(e*cot(c + d*x))^(1/2),x)
 
output
(2*(-1)^(1/4)*a^2*atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2)))/(d*e 
^(1/2)) - (2*(-1)^(1/4)*a^2*atan(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/ 
2)))/(d*e^(1/2)) - (2*a^2*(e*cot(c + d*x))^(1/2))/(d*e)